A minimum discrimination information approach for hidden Markov modeling

نویسندگان

  • Yariv Ephraim
  • Amir Dembo
  • Lawrence R. Rabiner
چکیده

A new iterative approach for hidden Markov modeling of information sources which aims at minimizing the discrimination information (or the cross-entropy) between the source and the model is proposed. This approach does not require the commonly used assumption that the source to be modeled is a hidden Markov process. The algorithm is started from the model estimated by the traditional maximum likelihood (ML) approach and alternatively decreases the discrimination information over all probability distributions of the source which agree with the given measurements and all hidden Markov models. The proposed procedure generalizes the Baum algorithm for ML hidden Markov modeling. The procedure is shown to be a descent algorithm for the discrimination information measure and its local convergence is proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

مدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان

Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...

متن کامل

Minimum Classification Error Training of Hidden Conditional Random Fields for Speech and Speaker Recognition

Hidden conditional random fields (HCRFs) are derived from the theory of conditional random fields with hidden-state probabilistic framework. It directly models the conditional probability of a label sequence given observations. Compared to hidden Markov models, HCRFs provide a number of benefits in the acoustic modeling of speech signals. Prior works for training on HCRFs were accomplished with...

متن کامل

مدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز

Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...

متن کامل

Automatic Video Object Detection and Recognitionwith Camera in Motion

In this paper, we present an automatic moving object extraction and classification system. For extraction, a novel technique for automatic extraction of moving object captured by a moving camera is proposed. Optical flow handles the background modeling and camera motion estimation, and frame difference information yields the exact object shape. We also put forward region boundary based change d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1989